
Real-time data exchange (RTDE) robot control integration for 
Fabrication Information Modeling

Martin Slepicka1, Jalal Helou1 and André Borrmann1

1Chair of Computational Modeling and Simulation, Technical University of Munich, Germany

martin.slepicka@tum.de, jalal.helou@tum.de, andre.borrmann@tum.de,

Abstract -
In response to its stagnating productivity and growing de-

mand for sustainability, the architecture, engineering, and
construction (AEC) industry is increasingly pushing ahead
regarding digitization and automation. Building Informa-
tion Modeling (BIM) and Additive Manufacturing (AM) are
two technologies that contribute significantly to this develop-
ment. Although these technologies have similar basic princi-
ples — both are based on computer-aided methodologies and
used for automation purposes — they have long been devel-
oped independently in the construction industry. However,
recently, studies on integrating AM into BIM methodology
have gained momentum. One approach is the Fabrication
Information Modeling (FIM) methodology which aims at in-
terfacing digital design with automated manufacturing by
providing a fabrication-aware intermediate layer, a digital
model that contains all the information necessary for auto-
mated fabrication. This study focuses on extending FIM by
providing a new robot control methodology that can directly
utilize FIM data to control an AM system and is better suited
to extrusion-based concrete 3D printing needs. The proposed
robot control method aims to be more flexible regarding the
recalibration of printing parameters and prepares the basis
for developing systems for automated quality control.

Keywords -
Fabrication Information Modeling; AM; Robotics

1 Introduction
The architecture, engineering, and construction (AEC)

industry has been stagnant for a long time regarding the
industry’s productivity. In response to this, and to sat-
isfy the growing demand for sustainability, the industry is
increasingly pushing ahead in digitization. Critical com-
ponents of this development include Building Information
Modeling (BIM) and Additive Manufacturing (AM). On
the one hand, there is BIM, a methodology developed to
enable seamless use of digital data throughout the lifecycle
of a building [1]. On the other hand, there is AM, a term
that refers to various additive manufacturing processes
that can resource-efficiently generate complex geometries
from building materials based on digital data. However,

although both technologies are based on computer-aided
methodologies, they have long been developed separately
in the industry. Among other things, this has also pre-
vented the development of uniform data modeling guide-
lines, which has made it challenging to synergize the two
technologies. This fact has led to various efforts to com-
bine the two technologies [2]. Among other things, a
methodology was developed to derive manufacturing in-
formation from BIM data for use with extrusion-based AM
methods, i.e., Fabrication Information Modeling (FIM)
[3].

With the help of FIM, tool paths for 3D printing of
building components can be generated based on paramet-
ric patterns. In addition, with interfaces to various robot
control frameworks, printing can be included in the dig-
ital workflow, regardless of which robot system is used.
However, it should be noted that the FIM data are mostly
not read directly or conversion-free by the robot control
system but are interpreted via the interface.

Another problem is that concrete printing is a highly
delicate matter. For fresh concrete to be processed using
extrusion-based 3D printing, it must be pumpable, extrud-
able, and buildable [4]. These three properties contradict
each other to some extent. On the one hand, the con-
crete must be flowable to be pumped. However, on the
other hand, it must remain dimensionally stable as it is
extruded through the nozzle and must be load-bearing fast
enough to withstand further printing layers. In addition,
external influences can change these rheological proper-
ties; among other things, pumping too fast can negatively
affect the material’s composition, while printing too slow
can lead to poor inter-layer bonding [4]. Further negative
influences are time-dependent due to the long curing time
of the concrete. Others originate from, e.g., inertia effects
during rapid changes of direction [4] or simply from en-
vironmental influences, such as temperature or humidity
[5].

For these reasons, AM processes in construction are
heavily dependent on human supervision. Concrete print-
ing often fails without quality control and recalibrations,
resulting in inferior component quality. In order to in-
crease the degree of automation, this study proposes a
robot control methodology that is significantly more adapt-

mailto:martin.slepicka@tum.de
mailto:jalal.helou@tum.de
mailto:andre.borrmann@tum.de


able than other comparable systems. On the one hand, the
system can process the FIM data directly without inter-
mediate steps. On the other hand, it is suitable to plan a
velocity profile taking inertia effects at direction changes
into account. Furthermore, the system enables adaptation
of the fabrication information during the printing process
and thus provides new possibilities to integrate sensor sys-
tems into the AM system for automated quality control. It
can quickly be recalibrated, and parameters relevant to 3D
printing can be changed by user input.

In the following, we will first show how conventional
methods are carried out. Then the proposed methodol-
ogy is described in detail, and improvements compared to
conventional methods are discussed.

2 Background
In this study, the focus is on extrusion-based concrete

printing methods. One of the first, and still representative,
processes developed is Contour Crafting (CC), in which
concrete is forced through a nozzle to form a strand (or
filament) and then deposited layer by layer according to a
digital model. CC was developed in analogy to the Fused
Deposition Modeling (FDM) 3D printing method, pro-
cessing a thermoplastic in the same functional principle.

As with FDM, the corresponding digital model is cre-
ated as a volume model using computer-aided design
(CAD) and stored in a data format suitable for the sub-
sequent slicing operation, usually as Stereolithography
(STL) file. The subsequent slicing process cuts the volume
model into several equidistant 2D slices. These slices are
then converted into tool paths that describe the movement
of the nozzle and, thus, the location where the material is
applied. Usually, these paths first follow the contour of the
slice and then fill the rest of the surface following a specific
pattern (hatching). After that, the planned path is trans-
formed into a robot trajectory, i.e., a series of robot poses
that the machine must traverse, and communicated to the
3D printer along with the extrusion rates via G-Code or
other specific interfaces [6]. Executing this robot control
code will then start the printing process.

This trajectory translation depends on the selected robot
system, e.g., for an industrial robot arm with six degrees
of freedom (6-DoF), six coordinates describe each pose.
In the Cartesian representation, three coordinates (𝑋 , 𝑌 ,
𝑍) describe the position of the robot’s end-effector, and
another three coordinates (𝑅𝑋, 𝑅𝑌 , 𝑅𝑍 ) describe its orien-
tation. However, the robot requires these coordinates as a
list of joint positions (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6), which must
be calculated by inverse kinematics (usually done by the
robot control unit) [7].

Inverse kinematics transforms a robot’s end-effector co-
ordinate frame from Cartesian space into Joint space using
Denavit-Hartenberg-Transformations. For a 6-DoF robot

arm, six chained transformations must be solved for the
respective Joint angles, which is a very time-consuming
calculation and usually provides multiple results (more
than one possible pose). The transformation from Joint
space to Cartesian space is called forward kinematics, a
more straightforward problem that provides only one so-
lution.

2.1 Digital model

The representation of the geometry (digital model) is
the output of the design process that usually describes
the product’s final form. As previously stated, the digital
model is usually created using the user’s preferred CAD
tool. However, with CAD, it is only possible to generate
the geometry of the component to be manufactured. Addi-
tional information, e.g., the material to be used or varying
feed rates, cannot be considered in this process [8]. Ad-
ditionally, the representation requires several preparation
steps for fabrication, such as meshing into the STL for-
mat and layer-wise slicing, introducing multiple areas of
deviations, and hindering automation.

Furthermore, an STL mesh exhibits numerous redun-
dancies and cannot model curved segments accurately ex-
cept with significantly large file sizes [9]. Thus, the aspects
needed for fabrication are handled after the design process
rather than incorporated into it. Nevertheless, with the
extensive knowledge and support for CAD files regard-
ing meshing, optimization, and simulation, concrete 3D
printing (C3DP) processes based on regular CAD are the
current standard [6, 10].

On the other hand, BIM has been proven to offer mul-
tiple advantages to the construction industry and C3DP,
such as the support for additional parameters for fabrica-
tion and standard support for Industry Foundation Classes
(IFC), which is advantageous for AM applications [8, 9].
Several studies have taken advantage of the flexibility of
BIM and developed automated BIM-based AM fabrication
processes [8, 11].

The proposed methodology in this study uses the FIM
methodology developed by Slepicka et al. [3] for gener-
ating the required digital model instead of using a simple
CAD tool. FIM offers a pattern-based approach where
voids, inserts, supports, and other functional inserts can
be integrated directly into the design. Another advantage
of using FIM is that the path-planning tasks are already
incorporated in this step. Therefore most of the tasks are
semi-automatically applied already in the design phase.

2.2 Planning and Execution

As mentioned before, for path planning, it is standard
practice to use slicing software, which converts an STL
file into tool paths that can be exported as robot control
code. The slicer program will use a specific in-fill pattern,



density, and material based on user input, specifying how
the end-effector’s tool path is generated. Typical slicing
software solutions provide different output formats, but the
old industry standard DIN 66025, commonly known as G-
Code, is often used for 3D printing [8, 11]. A different ap-
proach gaining much interest is using the Robot Operating
System (ROS) framework, which provides MoveIt!, a mo-
tion planning framework, for path planning [12]. MoveIt!
can plan the path, calculate inverse kinematics, and detect
collisions, among other features.

When the path planning is complete, the manufacturing
information is transmitted to the robot, which performs
the 3D printing. There are two different methods for this
task, offline and online programming. In this context,
offline programming refers to transmitting manufacturing
information as a whole, which is then executed sequen-
tially. Online programming, on the other hand, describes
the continuous transmission of manufacturing information
in small packages, which enables more control and room
for feedback [13].

Using MoveIt!, offline programming is the standard,
where the complete path and the joint coordinates are pre-
calculated. Although this approach allows collision check-
ing, it does not allow real-time checks and adaptations to
the printing path.

With FIM, the planning process for the fabrication is,
as mentioned in the previous section, shifted to the design
phase, when the digital model is created and, in part, auto-
mated. Using FIM, BIM data is extracted and processed by
applying design patterns, generating semi-automatically
(the user must choose design parameters) fabrication in-
formation for a selected component. While the outer shape
of the component is retained from the BIM design, the
pattern is applied to generate the interior structure of the
component. In contrast to conventional slicing methods,
with FIM, the voids are designed by path planning, not the
other way around [3]. The fabrication information (path
and parameters for material, process, and machinery) is
stored in the BIM exchange format IFC (cf. fig. 5).

When combining FIM with the methodology proposed
in this study (cf. section 3), the manufacturing information
can be directly transmitted with the online programming
strategy to an AM system. As discussed in section 3.1.2, an
object-oriented planning algorithm is proposed that com-
plements the FIM-IFC representation [3], enabling direct
data access and the generation of an adapted velocity pro-
file. The proposed high-frequency online communication
uses the Real-Time Data Exchange (RTDE) offered by
Universal RobotsTM (UR), which synchronizes the UR
controller with an external client over TCP/IP. While this
communication protocol is specific to UR CB-Series and
e-Series robots, other industrial robots offer similar proto-
cols for data exchange, e.g., KUKAs Robot Sensor Inter-

face (RSI) [14].

3 Methodology

The proposed methodology consists of several modules
described in detail in this section, including their execu-
tion. In general, the RTDE methodology is supposed to
directly process digital models generated by FIM [3] and
execute the contained fabrication information. Thus, it
extends the FIM framework, providing means to gener-
ate system-specific velocity profiles and to directly control
AM systems. At the same time, the system also opens up
possibilities to feed data back to the FIM model during
the printing process. Figure 1 summarizes the different
modules and their connections to each other.

3.1 Modules

TCP/IP

Python

IFC
Interface

Inverse
Kinematics 

Real-Time Data
Exchange

Module


Path
Planning
Algorithm


Motion
History

C++

End Effector

Figure 1. A Flowchart of the Different Modules used
within the Methodology

3.1.1 IFC Interface

As discussed in [3], FIM uses the IFC format to
store the fabrication information (printing path and other
variables relevant to the printing process). Using the
available ifcOpenShell library for Python, the IFC file’s
contents can be read and queried easily. The code
queries for layers that are geometrically represented
as IfcCompositeCurve entities, which in turn con-
tain IfcCompositeCurveSegment describing the ge-
ometry of each layer segment. While the specific
geometry can be of any IFC representation, the cur-
rent code is equipped to handle IfcTrimmedCurve,
IfcPolyLine, and IfcSpline entities. All the
IfcCompositeCurve entities are stored as layer objects,
whereas IfcCompositeCurveSegment entities are trans-
lated into segment objects within the program. Segments
are parametrized and can be evaluated using 𝑡 ∈ [0, 1]
and discretized into 𝑁 equal segments or based on an ar-
ray of step sizes utilized within the path planning module.



This object-oriented approach allows for a more straight-
forward adaptation of other IFC entities and allows control
over the required discretization in later workflow stages.
The layer and segment objects can be offset, scaled, and
trimmed using their respective method functions.

3.1.2 Velocity profile

Initially, the velocity profile algorithm assumes a con-
stant velocity for the entire layer. It then adds a gradual
acceleration and deceleration at the start and end, respec-
tively, represented by a hyperbolic tangent profile. An
exemplary velocity profile is shown in Fig. 2 for one layer.

Vavg

0

Ve
lo

ci
ty

 M
ag

ni
tu

de

Time0 t layer

Figure 2. Schematic of the Assumed Velocity Profile
of one Layer within the Path Planning Algorithm

The profile is entirely defined by the user input values of
the layer printing time and maximum acceleration/decel-
eration values. Based on the frequency of the established
connection with the end-effector, an array of step sizes is
calculated, defining the distance between the discretized
points. These step sizes are fed sequentially to each seg-
ment’s discretize method to obtain a list of waypoints
for the end-effector to follow. The velocity and accelera-
tion in each direction are also calculated to ensure that the
machine limits are not exceeded.

3.1.3 Inverse Kinematics

With the printing layer segments discretized into an ar-
ray of cartesian points, inverse kinematics is performed to
obtain an array of joint coordinates that the specific end-
effector can execute. These calculations are the most time-
consuming among the modules and thus are implemented
using C++, utilizing the mathematical library Eigen for
matrix operations and pybind11 for Python bindings. The
compiled program offers a kinematicCalculator ob-
ject that can be initialized for a specific end-effector cur-
rently limited to UR5, UR5e, UR10, and UR10e but
can be extended to any end-effector with known De-
navit–Hartenberg parameters. The C++ object also has
the methods forward and backward for executing the
respective kinematic transformations.

Using C++ ensures the real-time capability of the pro-
gram, where a look-ahead time of a few seconds can be
safely maintained. For instance, at a 125 Hz frequency of
communication, the program’s ratio of execution time to
planning time varies between 1.8 and 2.5 on the reference
machine.

3.1.4 Real-Time Data Exchange

As mentioned, the RTDE controller communicates with
the robot and performs the printing process. While using
the RTDE communication protocol, the user can perform
several tasks. The user can manipulate the robot’s joints,
read its TCP and joint position, and use its general-purpose
digital and analog I/O registers. These parameters are con-
tinuously transmitted using a high-frequency connection
reaching update rates of 125 Hz on CB-series robots and
500 Hz on e-Series robots [15]. Within the control loop
of the end-effector, the UR controller has priority over the
RTDE communication while allowing the robot to skip
packages that interrupt its computations, which minimizes
the jerk of the robot.

Additionally, to this end, the inverse kinematics step is
done prior, as described in section 3.1.3, allowing greater
control over the computational speed. RTDE for UR-
robots is provided in C++ and Python APIs and is used
in Python for this work. The API works with a URScript
running on the robot, which receives the path information
and governs the movement of the end-effector.

With the proposed RTDE methodology, the robot mo-
tion is controlled by transmitting the individual poses that
the robot traverses as joint coordinates at a fixed trans-
mission rate (z.B. 125 𝐻𝑧). The robot is moved to the
pose just transmitted in time until the subsequent trans-
mission (0.008 𝑠 at 125 𝐻𝑧). Accordingly, the speed at
which the distance of each successive pose describes the
robot moves. Thus it is possible to influence the position
and speed of the robot in each of the time intervals, ei-
ther to insert an unscheduled stop or to react to deviations
based on sensor data. In addition, the corresponding data
can be processed graphically and made usable for process
monitoring (cf. fig. 7).

The packages transmitted are defined using a
configuration XML file, with outputs from the
robot defined in the state recipe, while inputs
are defined in the setp recipe. The outputs
runtime state, actual TCP pose, actual q, and
output int register 0 are used to monitor the robot’s
state, positions in Cartesian and joint coordinates, and
an integer to communicate with the URScript running on
the robot, respectively. Meanwhile, inputs are defined as
six double registers, input double register *, which
transmit the joint positions to the URScript.

A URScript program, illustrated in Fig. 3, must be exe-



BeforeStart
 write_output_integer_register(0, 0)
 tmp:=[0,0,0,0,0,0]
 setp = get_actual_joint_positions()
 Popup
 write_output_ integer register(0, 1)
 rtde_set_watchdog("input int register 0", 1, "STOP")

Robot Program
 servoj(setp, 0, 0, 0.008, 0.1, 300)

Thread 1
 setp :=get_actual_joint_positions()
Loop

 tmp:=[0,0,0,0,0,0]
 tmp[0] = read_input_float_register(0)
 tmp[1] = read_input_float_register(1)
 tmp[2] = read_input_float_register(2)
 tmp[3] = read_input_float_register(3)
 tmp[4] = read_input_float_register(4)
 tmp[5] = read_input_float_register(5)
 x = norm(tmp)
 If x

 setp:= tmp
 write_output_integer_register(0, 0)

Figure 3. URScript running on the End-Effector

cuted on the robot’s end for the system to receive and apply
the transmitted waypoints. The program starts with ini-
tializing variables and waits for a pop-up message box to
be closed by the user. Then the execution process starts as
soon as the RTDE communication from the Python code
starts. After that, the script continuously executes servoj
along with a thread in which it sets the joint position setp
to the input double register *, read by the function
read input float register. servoj is a real-time
control function of joint positions, which blocks the com-
putation for a specified parameter �, determined by the fre-
quency of the communication. It uses look-ahead time
and gain to predict the future trajectory [16]. If changed,
these parameters can further fine-tune the reaction time of
the robot and the smoothness of the robot’s trajectory. For
this study, the standard settings recommended in the docu-
mentation were used and proved sufficient. The parameter
� can be set to a value as low as 0.002 � (500 ��) for e-
Series robots but was set to 0.008 � in this study to ensure
that the inverse kinematics calculations can be performed
in parallel to execution (cf. section 3.1.3).

3.2 Program Execution

With each of the modules described, the overall flow
and execution of the methodology are illustrated in Fig. 4.
After initializing and reading the IFC file using the IFC
Reader module and after initializing the RTDE communi-
cation via the configuration XML file, three threads are ac-
tivated. The planning thread is responsible for discretizing
the segments and layers provided by the reader into three-

dimensional Cartesian coordinates. The inverse kinemat-
ics thread receives the Cartesian coordinates and calculates
the joint coordinates. Finally, the communication thread
relays the joint coordinates to the URScript with the spec-
ified frequency of 125 Hz to maintain real-time control.
The communication thread also communicates with the
extrusion module, controlled by a serial connection.

Joint Values

segment / layer
objects

IFC

XML

IFC Reader Planning Thread

Inv.Kinematics Thread

XYZ Coordinates

Communication Thread

Joint Values

RTDE

URScriptEnd-Effector

Status

Figure 4. Execution Flowchart of the Proposed
Methodology

The Planning and the inverse kinematics thread are put
on hold to avoid unnecessary computation when they have
calculated enough joint coordinates, defined by look-ahead
time limits, and resume when the robot has caught up.
Using this sequence, the segment, layer, and coordinate
information can be changed and fed into the thread within
or after the look-ahead time has passed. Accordingly, this
also enables the user to change the layer time, extrusion
rate, and other parameters depending on the results at the
start of the printing process. If changes are made, these
will only take effect after a few seconds (depending on the
hardware) so as not to interrupt printing.

4 Experimental Validation
The presented robot control methodology has been de-

veloped for a small-scale test setup, including a Universal
Robot UR10e industrial robot arm and an extrusion-based
clay printing tool. The following validation shows that the
developed planning and control modules can directly pro-
cess FIM models into robot motion in a robust and smooth
process. From the preparation of the design to the finished
printed component, only a few steps are required. For
controlling the robot, a regular laptop with the following
specifications was connected via TCP/IP to the robot:

• i7-6700HQ 2.6 GHz Processor (8 Cores)

• 12 GB of Random Access Memory (RAM)

• Ubuntu 22.04 LTS



Figure 5. Fabrication Information Model used for
testing the robot control method [3].

Figure 6. Velocity profile for the imported FIM
model.

Using the FIM framework [3], a BIM-based design –
a quarter-circular wall with a zigzag in-fill – was created
to be fabricated with the clay printer (cf. Fig. 5). As a
first step, a suitable velocity profile was generated for this
printing path, which was limited by a maximum acceler-
ation of 250��

�2 and by a layer time of 70�. As shown
in Fig. 6, using a single layer as an example, the speed is
reduced in regions where a rapid change of direction oc-
curs. In addition, the slow acceleration and deceleration
at the beginning and end of the printing path can be seen.
The magnification shows that the path is discretized into
individual waypoints, and each waypoint gets a velocity
value assigned.

Before executing the clay print, the control system was
tested on a simulated robot,illustrated in Fig. 7, also de-
picting the GUI developed for this system. All the relevant

information can be seen on the GUI, and some values can
be adapted during print time. Finally, the system was
tested with the clay extruder, as shown in Fig. 8. The sim-
ulated robot and the actual clay print were executed using
an update rate of 125 ��, thus sending a new waypoint ev-
ery 0.008�. The resulting robot movement seemed much
smoother than with an offline programmed test print using
URscript, even at higher printing speeds. With the pro-
posed system, it is thus possible to produce components
faster compared to other control methods.

The RTDE control system was also successfully coupled
with the extruder control system, allowing the extrusion
rate to adapt automatically to the robot’s speed. The gen-
eral print quality of the system still needs to be assessed but
will be done in a coordinated test setup. Most importantly,
the system processed the manufacturing information piece
by piece while controlling the robot at a 125 �� update
rate without any jerking.

5 Conclusion
At its core, the proposed RTDE control method is sim-

ilar to other robot control frameworks, e.g., ROS, but it
follows a more streamlined approach, which fits the over-
all concept of FIM. It can directly process FIM models
and convert the data into robot movement without data
conversion. Additionally, since the FIM data is not pro-
cessed all at once before printing begins but piece by piece,
the system remains adaptable if the printing path or any
print parameters need to be changed. Although the path
planning and robot control modules are separate in the
current implementation of FIM, both systems could be
run simultaneously. Any changes to the print path could
be done automatically based on sensor input. Only a few
steps are required to process a digital model into a finished
component.

However, the main advantage of the proposed RTDE
robot control method is its simplicity. Although open-
source robot control frameworks are being developed
to provide a common platform for controlling different
robots, these systems are mainly developed for scientific
purposes, i.e., mainly for lightweight robots. For example,
in ROS, various Kuka robot systems are integrated up to
the size KR210/150, but none of the larger robot models
are supported. The control method presented in this study
can always be used, provided that parameters can be trans-
mitted to the robot via a suitable communication interface
and the Denavit-Hartenberg parameters corresponding to
the robot are available. For UR robots, the RTDE func-
tionality has been demonstrated in this study. However,
in the same way, it can be done for Kuka robots, via the
RSI interface or the KukaVarProxy tool [14], or for ABB
robots, via the OPC UA or MQTT interface.

The system is easily expandable and opens up many pos-



Figure 7. Using the robot control system with a simulated UR10e robot (left), showing the GUI of the system
(right).

Figure 8. Clay print using the implemented robot
control system. The shown clay extruder nozzle is
mounted on a UR10e robot.

sibilities, such as integrating different (closed loop) con-
trol loops. For this reason, the proposed RTDE method
is invaluable for setting up automatic quality control sys-
tems and thus increasing AM systems’ automation level.
The implementation shown in this study also provides a
lightweight GUI and enables the user to interact with the
printing process while it is running.

Compared to the offline control of the robot (using the
URScript functionality), the printing process seems much
smoother with the RTDE control, which is easily explained
by the velocity smoothing at sharp corners in the print path
impossible otherwise. A fact that is taken as an indication
that velocity smoothing positively affects the overall print
quality. However, as this study is mainly focused on robot

control, the performance of the printed specimens was not
evaluated quantitatively. Nevertheless, the RTDE control
can be used to study the effects of speed smoothing when
printing with viscous materials such as concrete or clay.

Acknowledgments
The research presented is part of the Transregio 277

‘Additive Manufacturing in Construction – The Challenge
of Large Scale’, funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – project
number 414265976 – TRR 277.

References
[1] André Borrmann, Markus König, Christian Koch,

and Jakob Beetz. Building information modeling:
Why? what? how? In Building information model-
ing – Technology Foundations and Industry Practice,
pages 1–24. Springer, 2018.

[2] Klodian Gradeci and Nathalie Labonnote. On the
potential of integrating building information mod-
elling (BIM) for the additive manufacturing (AM) of
concrete structures. Construction Innovation, 2019.

[3] Martin Slepicka, Simon Vilgertshofer, and André
Borrmann. Fabrication Information Modeling: in-
terfacing building information modeling with dig-
ital fabrication. Construction Robotics, 6(2):87–
99, 2022. ISSN 2509-8780. doi:10.1007/s41693-

https://doi.org/10.1007/s41693-022-00075-2
https://doi.org/10.1007/s41693-022-00075-2


022-00075-2. URL https://doi.org/10.1007/
s41693-022-00075-2.

[4] R.A. Buswell, W.R. Leal de Silva, S.Z. Jones,
and J. Dirrenberger. 3D printing using concrete
extrusion: A roadmap for research. Cement and Con-
crete Research, 112:37–49, 2018. ISSN 0008-8846.
doi:https://doi.org/10.1016/j.cemconres.2018.05.006.
URL https://www.sciencedirect.com/

science/article/pii/S0008884617311924.
SI : Digital concrete 2018.

[5] Nicolas Roussel. Rheological requirements for
printable concretes. Cement and Concrete Re-
search, 112:76–85, 2018. ISSN 0008-8846.
doi:https://doi.org/10.1016/j.cemconres.2018.04.005.
URL https://www.sciencedirect.com/

science/article/pii/S000888461830070X.
SI : Digital concrete 2018.

[6] Pinar Urhal, Andrew Weightman, Carl Diver, and
Paulo Bartolo. Robot assisted additive manu-
facturing: A review. Robotics and Computer-
Integrated Manufacturing, 59:335–345, 2019.
doi:10.1016/j.rcim.2019.05.005.

[7] Serdar Kucuk and Zafer Bingul. Robot kinematics:
Forward and inverse kinematics. INTECH Open
Access Publisher London, UK, 2006.

[8] Lieyun Ding, Ran Wei, and Haichao Che.
Development of a BIM-based automated
construction system. Procedia Engineer-
ing, 85:123–131, 2014. ISSN 1877-7058.
doi:https://doi.org/10.1016/j.proeng.2014.10.536.
URL https://www.sciencedirect.com/

science/article/pii/S187770581401902X.

[9] Alexander Paolini, Stefan Kollmannsberger, and
Ernst Rank. Additive manufacturing in con-
struction: A review on processes, applications,
and digital planning methods. Additive Manu-
facturing, 30:100894, 2019. ISSN 2214-8604.
doi:https://doi.org/10.1016/j.addma.2019.100894.
URL https://www.sciencedirect.com/

science/article/pii/S2214860419309029.

[10] Filipe Monteiro Ribeiro, J. Norberto Pires, and
Amin S. Azar. Implementation of a robot con-
trol architecture for additive manufacturing appli-
cations. Industrial Robot: the international journal
of robotics research and application, 46(1):73–82,
2019. doi:10.1108/ir-11-2018-0226.

[11] Omid Davtalab, Ali Kazemian, and Behrokh
Khoshnevis. Perspectives on a BIM-integrated

software platform for robotic construction
through Contour Crafting. Automation in Con-
struction, 89:13–23, 2018. ISSN 0926-5805.
doi:https://doi.org/10.1016/j.autcon.2018.01.006.
URL https://www.sciencedirect.com/

science/article/pii/S0926580517307975.

[12] Xuchu Xu, Ruoyu Wang, Qiming Cao, and Chen
Feng. Towards 3D Perception and Closed-Loop Con-
trol for 3D Construction Printing. In Proceedings
of the 37th International Symposium on Automa-
tion and Robotics in Construction (ISARC), pages
1576–1583, Kitakyushu, Japan, October 2020. Inter-
national Association for Automation and Robotics in
Construction (IAARC). ISBN 978-952-94-3634-7.
doi:10.22260/ISARC2020/0219.

[13] Arturo Laurenzi, Enrico Mingo Hoffman, Luca Mu-
ratore, and Nikos G. Tsagarakis. Cartesi/o: A
ros based real-time capable cartesian control frame-
work. In 2019 International Conference on Robotics
and Automation (ICRA), pages 591–596, 2019.
doi:10.1109/ICRA.2019.8794464.

[14] M.H. Arbo, I. Eriksen, F. Sanfilippo, and J.T.
Gravdahl. Comparison of kvp and rsi for control-
ling kuka robots over ros. IFAC-PapersOnLine,
53(2):9841–9846, 2020. ISSN 2405-8963.
doi:https://doi.org/10.1016/j.ifacol.2020.12.2688.
URL https://www.sciencedirect.com/

science/article/pii/S2405896320334509.
21st IFAC World Congress.

[15] Real-time data exchange (RTDE) guide
- 22229, 2022. URL https://www.

universal-robots.com/articles/

ur/interface-communication/

real-time-data-exchange-rtde-guide/.

[16] Universal robots - script manual - e-series - sw 5.11,
2022. URL https://www.universal-robots.
com/download/manuals-e-series/script/

script-manual-e-series-sw-511/.

https://doi.org/10.1007/s41693-022-00075-2
https://doi.org/10.1007/s41693-022-00075-2
https://doi.org/10.1007/s41693-022-00075-2
https://doi.org/https://doi.org/10.1016/j.cemconres.2018.05.006
https://www.sciencedirect.com/science/article/pii/S0008884617311924
https://www.sciencedirect.com/science/article/pii/S0008884617311924
https://doi.org/https://doi.org/10.1016/j.cemconres.2018.04.005
https://www.sciencedirect.com/science/article/pii/S000888461830070X
https://www.sciencedirect.com/science/article/pii/S000888461830070X
https://doi.org/10.1016/j.rcim.2019.05.005
https://doi.org/https://doi.org/10.1016/j.proeng.2014.10.536
https://www.sciencedirect.com/science/article/pii/S187770581401902X
https://www.sciencedirect.com/science/article/pii/S187770581401902X
https://doi.org/https://doi.org/10.1016/j.addma.2019.100894
https://www.sciencedirect.com/science/article/pii/S2214860419309029
https://www.sciencedirect.com/science/article/pii/S2214860419309029
https://doi.org/10.1108/ir-11-2018-0226
https://doi.org/https://doi.org/10.1016/j.autcon.2018.01.006
https://www.sciencedirect.com/science/article/pii/S0926580517307975
https://www.sciencedirect.com/science/article/pii/S0926580517307975
https://doi.org/10.22260/ISARC2020/0219
https://doi.org/10.1109/ICRA.2019.8794464
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2688
https://www.sciencedirect.com/science/article/pii/S2405896320334509
https://www.sciencedirect.com/science/article/pii/S2405896320334509
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/download/manuals-e-series/script/script-manual-e-series-sw-511/
https://www.universal-robots.com/download/manuals-e-series/script/script-manual-e-series-sw-511/
https://www.universal-robots.com/download/manuals-e-series/script/script-manual-e-series-sw-511/

